телефоны для консультаций

+7 (495) 956 75 71 для Москвы
+7 (495) 956 71 83 для Регионов

Автозапчасти Аккумуляторы Аксессуары Автомобили Автомасла и Автохимия Инструмент Автоприцепы Шины и Диски Техника для Отдыха Техника для Сада Сервис Страхование
Автозапчасти Аккумуляторы Аксессуары Автомобили Автомасла и Автохимия Инструмент Автоприцепы Шины и Диски Техника для Отдыха Техника для Сада Сервис Страхование

Двигатель Внутреннего Сгорания

 

Двигатель внутреннего сгорания (ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.
Несмотря на то, что ДВС являются несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например на транспорте.
 
Схема работы четырехтактного цилиндра двигателя, цикл Отто
  1. впуск
  2. сжатие
  3. рабочий ход
  4. выпуск

Основными типами ДВС являются:

Поршневые двигатели — камерой сгорания является цилиндр, где тепловая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

По типу используемого топлива делятся на:

Бензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), или непосредственно в цилиндре при помощи распыляющих форсунок, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи.

Дизельные —специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Возгорание смеси происходит под действием высокого давления и, как следствие, температуры в камере.

Газовые — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:
  1. смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  2. сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  3. генераторный газ — газ, полученный превращением твёрдого топлива в газообразное.

В качестве твердого топлива используются:

  • уголь
  • торф
  • древесина
Газодизельные — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.
Двухтактный цикл. в двухтакном цикле рабочие ходы происходят вдвое чаще.

Роторно-поршневые — за счёт вращения в камере сгорания многогранного ротора динамически формируются объёмы, в которых происходит обычный цикл ДВС.

Газотурбинные двигатели — энергия расширяющихся продуктов горения передаётся на лопатки газовой турбины.  

Дополнительные агрегаты, требующиеся для ДВС

Недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартёр. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии.
Также ДВС нужны топливная система (для подачи топливной смеси) и выхлопная система (для отвода выхлопных газов).
 
Бензиновый двигатель внутреннего сгорания

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, входящего в двигатель, посредством дроссельной заслонки.

Классификация бензиновых двигателей

По способу смесеобразования

двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые),
двигатели с непосредственным впрыском, двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров)

По способу осуществления рабочего цикла — четырехтактные и двухтактные.

Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизованых инструментах.

Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках);

По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;

По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным);

По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;

По виду применяемого топлива — бензиновые и многотопливные;

По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;

По способу наполнения цилиндра свежим зарядом:
  • двигатели без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня;
  • двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;

По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.

Практически не употребляемые виды моторов — роторно-поршневые Ванкеля, с внешним сгоранием Стирлинга и т. д..

Бензиновые двигатели различаются также по способу приготовления рабочей смеси. В настоящее время существуют карбюраторные и инжекторные бензиновые двигатели, причём карбюраторные уже практически вытеснены инжекторными.

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя
Четырёхтактный бензиновый двигатель

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.
  1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
  2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с большим октановым числом, которое дороже.
  3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы давление газов достигло максимальной величины когда поршень будет находиться в ВМТ. При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором воздействующим на прерыватель). В более современных двигателях для регулировки угла опережения зажигания используют электронику.
  4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.
Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя
Рабочий цикл двухтактного двигателя
 
В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.
Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработанные газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх часть свежей смеси вытолкнутой из выпускного коллектора засасывается назад в кривошипную камеру.
Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском.

Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества и недостатки 4-тактных и 2-тактных двигателей

Преимущества четырёхтактных двигателей
  • Больший ресурс.
  • Большая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
Преимущества двухтактных двигателей
  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Большая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.
В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в безине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

Система зажигания — обеспечивает поджиг топлива в нужный момент.
Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Системы, общие для большинства типов двигателей

Система охлаждения
Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
Система смазки.
Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле

Дизельный двигатель

 
 
 

 
Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий на дизельном топливе.
 
Основное отличие дизельного двигателя от бензинового заключается в способе подачи топливо-воздушной смеси в цилиндр и способе её воспламенения. В бензиновом двигателе топливо смешивается с всасываемым воздухом до попадания в цилиндр, получаемая смесь поджигается в необходимый момент свечой зажигания. На всех режимах, за исключением режима полностью открытой дроссельной заслонки, дроссельная заслонка ограничивает воздушный поток, и наполнение цилиндров происходит не полностью.
В дизельном двигателе воздух подается в цилиндр отдельно от топлива и затем сжимается. Из-за высокой степени сжатия (от 14:1 до 24:1), когда воздух нагревается до температуры самовоспламенения дизельного топлива (800-900°С), оно впрыскивается в камеры сгорания форсунками под большим давлением (от 10 до 220 МПа). Свечи у дизеля тоже могут быть, но они являются свечами накаливания и разогревают воздух в камере сгорания, чтобы облегчить запуск.
Дизельный двигатель использует в своей работе термодинамический цикл с изохорно-изобарным подводом теплоты(цикл Тринклера-Сабатэ), благодаря очень высокой степени сжатия они отличаются большим КПД (до 50%) по сравнению сбензиновыми двигателями.

История

В 1890 году Рудольф Дизель развил теорию «экономичного термического двигателя», который благодаря сильному сжатию в цилиндрах значительно улучшает свою эффективность. Он получил патент на свой двигатель 23 февраля 1893.
Интересно, что в написанной им книге в качестве идеального топлива предлагалась каменноугольная пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; а также большие проблемы с подачей пыли в цилиндры. Зато была открыта дорога к использованию в качестве топлива тяжелых нефтяных фракций. Хотя Дизель и был первым, который запатентовал такой двигатель с воспламенением от сжатия, инженер по имени Экройд Стюарт высказывал ранее похожие идеи. Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в емкость, в которую впрыскивалось топливо. Для запуска двигателя емкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи.
Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, т. е. он не обратил внимания на самое большое преимущество — топливную эффективность. Может, это и было причиной того, что используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», т. к. теория Рудольфа Дизеля стала основой для создания современных двигателей с воспламенением от сжатия.
В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива не позволяли применять дизели в высоко-оборотистых агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.
В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным дальнейшее увеличение скорости вращения. Востребованный в таком виде высокооборотистый дизель стал пользоваться все большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу двигателей с электрическим зажиганием (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях, В 50 — 60-е годы дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо, на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.
В дальнейшие годы происходит рост популярности дизеля на легковых и грузовых автомобилях, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время предлагают как минимум по одной модели с дизельным двигателем.

Принцип работы

Четырехтактный цикл
  1. При первом такте (такт впуска, поршень идет вниз) свежая порция воздуха втягивается в цилиндр через открытый впускной клапан.
  2. При втором такте (такт сжатия, поршень идет вверх) впускной и выпускной клапаны закрыты, и воздух сжимается в объёме примерно в 17 раз (от 14:1 до 24:1), т. е. объём становится меньше в 17 раз по сравнению с общим объёмом цилиндра, и воздух становится очень горячим.
  3. Непосредственно перед началом третьего такта (такт рабочего хода, поршень идет вниз) топливо впрыскивается в камеру сгорания через распылитель форсунки. При впрыске топливо распыляется на мелкие частицы, которые равномерно перемешиваются со сжатым воздухом для создания самовоспламеняемой смеси. Энергия высвобождается при сгорании, когда поршень начинает свое движение в такте рабочего хода. Впрыск продолжается, что вызывает поддержание постоянного давления сгораемого топлива на поршень.
  4. Выпускной клапан открывается, когда начинается четвёртый такт (такт выпуска, поршень идет вверх), и выхлопные газы проходят через выпускной клапан.
В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:
  • Дизель с неразделённой камерой («дизель с непосредственным впрыском»): камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство минимальный расход топлива. Недостаток — повышенный шум. В настоящее время ведутся интенсивные работы по устранению указанного недостатка.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался. Это способствует хорошему перемешиванию впрыскиваемых топлива и воздуха и самовоспламенению смеси. Такая схема считалась оптимальной и широко использовалась. Однако вследствие худшей экономичности в последние два десятилетия идет активное вытеснение таких дизелей двигателями с непосредственным впрыском топлива.
Двухтактный цикл

Кроме вышеописанного четырёхтактного цикла, используется двухтактный цикл.

Пусть поршень находится в нижней мёртвой точке и цилиндр наполнен воздухом. Во время хода поршня вверх воздух сжимается; вблизи верхней мёртвой точки происходит впрыск топлива, которое самовоспламеняется. Затем происходит рабочий ход — продукты сгорания расширяются и передают энергию поршню, который движется вниз. Вблизи нижней мёртвой точки происходит продувка — продукты сгорания замещаются свежим воздухом. Цикл завершается.
Для осуществления продувки в нижней части цилиндра устраиваются продувочные окна. Когда поршень находится внизу, окна открыты. Когда поршень поднимается, он перекрывает окна.
Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой. Существует также клапанно-щелевая продувка, когда отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха.

Есть ещё двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня (оппозитная схема); каждый поршень управляет своими окнами — один впускными, другой выпускными (такая система использовалась на тепловозах ТЭ3 и ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Юнкерс).

Поскольку в двухтакном цикле рабочие ходы происходят вдвое чаще, то можно ожидать существенного повышения мощности по сравнению с четырёхтактным циклом. На практике же это не удаётся реализовать. В настоящее время двухтактные дизели широко применяются только на больших морских судах с непосредственным (безредукторным) приводом гребного винта. При невозможности повышения частоты вращения двухтактный цикл оказывается выгодным; такие тихоходные дизели имеют мощность до 100 000 л. с.

Варианты конструкции

Двигатели могут быть тронковыми (когда шатун непосредственно присоединяется к поршню) и крейцкопфными (когда верхняя часть шатуна присоединяется к крейцкопфу — специальной скользящей конструкции, которая соединяется с поршнем штоком. Крейцкопфные двигатели позволяют снизить износ цилиндра и поршня, поскольку они освобождены от боковых усилий; зато тронковые двигатели намного меньше по размеру и весу. В настоящее время крейцкопфные двигатели используются только на больших морских судах.
Крейцкопфные двигатели могут быть двойного действия, когда рабочие полости устраиваются с обеих сторон поршня. Из-за сложности конструкции двигатели двойного действия почти не используют.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.
Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение.
Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30% энергии топлива в полезную работу. Стандартный дизельный двигатель, обычно имеет коэффициент полезного действия в 30-40%, дизели с турбонаддувом и промежуточным охлаждением до 50%. Дизельное топливо, как правило, дешевле.
Дизельный двигатель выдает высокий крутящий момент в широком диапазоне оборотов, что делает автомобиль с дизельным двигателем более «гибким» в движении, чем такой же автомобиль с бензиновым двигателем. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более легким эффективное использование мощности двигателя.
По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах —это углеводороды (НС или СН) , оксиды (окислы) азота (NОх) и сажа (или её производные) в форме черного дыма. Они могут привести к астме и раку легких. Больше всего загрязняют атмосферу дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.
Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (т. е. легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более что в них не используется система зажигания. Это стало причиной широкого применения дизелей на танках, т. к. при попадании снаряда пары бензина, всегда находящиеся в плохо вентилируемом из-за броневой защиты моторном отсеке, легко воспламенялись.

Конечно, существуют и недостатки, среди которых характерный стук дизельного двигателя при его работе и маслянистое топливо. Однако они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.
Явными недостатками дизельных двигателей является необходимость использования стартера большой мощности, помутнение и застывание дизельного топлива при низких температурах, сложность в ремонте топливной аппаратуры, так как насосы высокого давления являются устройствами, изготовленными с высокой точностью. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Данные загрязнения очень быстро выводят топливную аппаратуру из строя. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным крутящим моментом в своем рабочем диапазоне. Экологические показатели дизельных моторов значительно уступали до последнего времени моторам бензиновым. На классический дизель-мотор с механически управляемым впрыском практически невозможно установить современный нейтрализатор отработавших газов («катализатор» в просторечье) из-за нестабильного состава этих самых отработанных газов. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой «Common-rail» системы. В данном типе дизелей впрыск топлива осуществляется электрически управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар, то в новейших «Common-rail» оно находится в диапазоне от 1000 и до 2500 бар, что влечет за собой немаленькие проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра». «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в "сажевом фильтре", поэтому программа блока управления периодически переводит двигатель в режим очистки "сажевого фильтра" путем так называемой "постинжекции", то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путем сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и так называемого "интеркулера" — то есть устройства, охлаждающего сжатый турбонагнетателем воздух. Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры, и, соответственно, впрыснуть больше топлива.

Основная конструкция дизельного двигателя подобна конструкции бензинового двигателя.

Однако одинаковые детали у дизеля обычно тяжелее и более устойчивы к более высоким давлениям сжатия, имеющим место у дизеля. Головки поршней, специально разработаны под особенности сгорания в дизельных двигателях и часто (но не всегда) под повышенную степень сжатия и головки поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Во многих случаях головки поршней содержат в себе камеру сгорания.

Продолжение следует.......

Источник: http://ru.wikipedia.org

Опубликовать в twitter.com Опубликовать в своем блоге livejournal.com
Новости
16.12.2014

«Группа ГАЗ» начала продажи коммерческих автомобилей в Грузии

«Группа ГАЗ» начала продажи в Грузии автомобилей марки ГАЗ, в том числе – машин нового поколения «ГАЗель Next» и «ГАЗон Next»

28.11.2014

Продажи автомобилей в рамках утилизации превысили 131 тыс

На данный момент объем продаж автомобилей со скидкой в рамках программы превысил 131 тыс. автомобилей

26.11.2014

АВТОВАЗ улучшил трансмиссию Lada Priora

АВТОВАЗ продолжает проводить обновления Lada Priora, как и других моделей, в течение всего жизненного цикла

гильза (КАМАЗ)

гильза (КАМАЗ)

Артикул: 740.1002021

Цена: 636 руб

Подписка на новости компании
Опрос
Оцените качество магазина zp-avto.ru на Яндекс.Маркете.

Вход в личный кабинет:

Забыли свой пароль?
Регистрация частных лиц Регистрация юридического лица
Прицеп рессорная подвеска Ш-1,2 м, Д-1,9 м

Прицеп рессорная подвеска Ш-1,2 м, Д-1,9 м

Артикул: АС19АВ

Цена: 43 875 руб

Дипломы:
АвтоДетальСервис ЗИЛ
ГАЗ Торговый дом "Двигатели"